Setting global config variables#
Data Science & AI Workbench provides a secondary config map (anaconda-enterprise-env-var-config
) that you can use to configure the platform. Any environment variables added to this config map will be available to all sessions, deployments, and scheduled jobs. This is a convenient alternative to using the Workbench CLI, as you can add any variable supported by conda configuration.
To make global configuration changes to the platform:
Create a backup of your current configmap file, then edit your configurations by running the following commands:
Run the following commands from anywhere you have
kubectl
access to the cluster:# Replace <NAMESPACE> with your Workbench cluster namespace kubectl get cm -n <NAMESPACE> anaconda-enterprise-env-var-config -o=jsonpath={.data."container-env-vars\.yml"} > container-env-vars.yaml kubectl edit cm -n <NAMESPACE> anaconda-enterprise-env-var-config
Run the following commands in an interactive shell on the master node:
# Replace <NAMESPACE> with your Workbench cluster namespace sudo gravity enter kubectl get cm anaconda-enterprise-env-var-config -o yaml > anaconda-env-var-config.yaml kubectl edit cm -n <NAMESPACE> anaconda-enterprise-env-var-config
Make your changes to the file, then save it.
Restart all pods using the following command:
# Replace <NAMESPACE> with your Workbench cluster namespace kubectl delete -n <NAMESPACE> --wait=false $(kubectl get pods -o name|grep ap-)
Tip
If something goes wrong with your configuration updates, you can restore your previous configurations by re-running the following commands:
# Replace <NAMESPACE> with your Workbench cluster namespace kubectl delete cm -n <NAMESPACE> anaconda-enterprise-env-var-config kubectl create cm -n <NAMESPACE> anaconda-enterprise-env-var-config --from-file anaconda-env-var-config.yml